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The gyroscopic stability of the triangular solutions is investigated for the generalized planar three-body problem (point masses) 
which differs from the classical three-body problem by the addition of a weightless elastic tether connecting two of the three 
bodies. It is shown that, when the tether has low stiffness and the masses of the connected bodies are substantially different, the 
triangular motions are stable for any values of the remaining parameters of the system. Q 2001 Elsevier Science Ltd. All rights 
reserved. 

The gyroscopic stability of the motions under consideration in the case of a rigid connection and equal 
masses of the connected bodies has been investigated previously [l]. In particular, a diagram showing 
the distribution of the fields of gyroscopic stability was presented which shows that, in the satellite domain 
of system parameters, triangular solutions are unstable and are therefore of limited interest in space 
technology. 

In the proposed investigation, the rigid connection is replaced by an elastic tether and the change 
in this diagram is traced as a function of the coefficient of elasticity of the tether and the ratio of the 
magnitudes of the terminal masses. It is found that, as the stiffness of the tether is reduced, the gyroscopic 
stability domain increases, it is shifted towards the range of parameters characteristic of satellites and 
covers this domain when the value of the coefficient of elasticity is below a certain critical value. Hence, 
in the case when the connection is sufficiently elastic, triangular motions can be of interest in the design 
of two-mass tethered satellite systems. An inequality in the masses of the connected bodies is also found 
to have a positive effect on the stability. In the case of very unequal masses and a sufficiently low stiffness 
of the tether, the triangular motions become gyroscopically stable for any values of the remaining 
parameters. 

Neglecting the mutual Newtonian attraction of the connected bodies, the calculated tension in the 
tether is found to be positive. At a first glance, it follows from this that the connection can be realized 
using a tether. However, when the Newtonian attraction between these bodies is additionally taken into 
account, the tension is found to be positive only in the case of a fairly long tether. The tension is negative 
in the case of shorter tethers and, for the physical realization of the connection in this case, it is necessary 
to use small thrusters (compressed gas cylinders, for example) at the ends of the tether which create 
two equal, constant stretching forces acting along the tether. 

The stability and bifurcation of the steady motions in the planar problem of two point masses 
connected by a weightless spring in a central Newtonian gravitational field have been studied in 
[2]. The steady spatial motions of such a system were considered in [3] and the sufficient conditions 
for the stability of one of the rectilinear configurations were obtained. The sufficient and necessary 
conditions for the stability of the steady motions in the formulation adopted in this paper were obtained 
in [4]. 

The problem of constructing controls, which ensure the coupling of the elements of extended space 
stations using the creation of artificial forces which simulate elastic and viscoelastic forces, has been 
discussed in several papers (see [5], for example, and the references therein). 
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Fig. 1 

1. FORMULATION OF THE PROBLEM AND 
THE EQUATIONS OF MOTION 

Suppose that three point masses mo, ml and m2 move in a fixed plane which is defined by the system 
of coordinates Oxy (Fig. l), (x, y) are the coordinates of the point mo, rl and r2 are the distances from 
the point m. to the points ml and m2, cp is the angle between the Ox axis and the vector mom1 and 
01 is the angle between mom1 and morn2 The coordinates of the points ml and m2 are defined by the 
formulae (x + rlcl,y + rpJ and (x + r2c2,y + r2s2), where 

cl = coscp, c2 = cos(cp + a), sI = sin cp, 32 =sin(cp+a). c=cosa. s=sina 

For the generalized velocities, we introduced the formulae 

u, =x, u2 =y, u3=(p, u, =r,, u2 =k2, u3=a 

Twice the kinetic energy of the system, the potential energy of the interaction of the points ml and 
rn2 and the potential energy of the interaction of the point m,-, with ml and m2 have the form 

2T=mo(u;+u~)+m,[(u, +uIcI +~~s,)~+(ujq -ulq +u2q)21+ 

+m2[(v2 +uIc2 +u2s212 +W+ +u3)r2 -UI~Z +w2121 (1.1) 

E = E(l), ll = -ymo(m, I q + m2 I r2 ); l=J 

Here, y is the Newtonian gravitational constant and 1 is the distance between the points ml and m2. 
Henceforth, we shall not specificially define the function E(Z). It is sufficient to know the values of 

its first and second derivatives (E ’ and E”) with respect to 1. Hence, all the results can be interpreted 
in terms of an arbitrary force interaction between the bodies ml and m2. In particular, if E = -ymIm& 
we shall have the classical problem of three mutually gravitating bodies. In this case, the quantity E”is 
negative. It therefore makes sense to consider both positive and negative values of E’! However, we 
will restrict ourselves to the case when E” 2 0 in this investigation. 

The kinetic and potential energies do not depend explicitly onx andy, and the equations of motion 
of the system therefore admit of cyclic integrals which express the conservation of momentum of the 
system 

aTlau, = mu, -(m,r,s, +m2rg2)u3+mlcpI +mzcp, -m2rgp3 =O 

aTl au2 =mu2 +(m,qc, +m2fic2)u3+mlspI +m2sy2+m2r,s~, =O (1.2) 

where m = m. + ml -I- m2 is the mass of the whole system. Without loss of generality, we shall put the 
constants in the integrals equal to zero, assuming that the system of coordinates Oxy moves translationally 
with the centre of mass of the system. 

Following Routh’s method, we will eliminate the cyclic velocities u1 and u2. In order to do this, we 
solve linear system (1.2) for u1 and u2 and substitute this solution into T. We obtain 
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w’=Ju:: +2g,u3(v, -ri,)+2(g,r, -g3q)r2u~3++~: +g2(u;+r2ty:)- 

-wJ Iv 2 + a4vJ Iv 3 

J =grq2 +g2r. -2g,qr, 

(1.3) 

g, = mf(m;+m2) (I t) 2), g3 ,i!$L& g, L!?$& 

Henceforth, the symbol (1 f) 2) denotes the existence of a further relation which differs by a cyclic 
permutation of the indices 1 and 2. 

The quantity F corresponds to the kinetic energy of the reduced system, which is equal to the kinetic 
energy of the relative motion of the point masses mo, ml, m2, in the Konig system of coordinates G_xy 
with its origin at the centre of mass G of the system, and J is the moment of inertia of the system with 
respect to the centre of mass G. 

In this system, u3 becomes the cyclic velocity. The cyclic integral, which expresses the conservation 
of angular momentum of the points of the system with respect to the centre of mass G 

aT’ I au 3 = J++g4WI --rjv2)+(g2’2 -g3qW3 =P (1.4 

corresponds to it, whence 

Ju3 = p-84Cw1 -rp2)-(g2r2 -wiW3 (1.5) 

Let us ignore the cyclic velocity u3 using Routh’s method. In order to do this, we introduce the 
function 

J 2 
-&wP2 +g4vJY3 ---u 2 3 

In the last term of formula (1.6), instead of the cyclic velocity u3, its value from (1.5) has to be 
substituted. 

In constructing Routh’s function 

R=T”-l-I-E 

we write the equations of motion in the form 

(1.7) 

d aR aR -- --=0, 
dt aui aqi i=l.2,3. q=(q.r,,a) (1.8) 

The function R can be represented in the form of the sum R = R2 + RI + Ro, where Rj are forms of 
degree of homogeneity i which are homogeneous with respect to the positional velocities ul, ~2, us. In 
terms of the reduced system, it can be said that the term R2 represents the kinetic energy and that (-Ro) 
represents the amended potential energy W, that is, 

w=-R() =g+Il+E(l) 

and the linear term RI determines the gyroscopic forces. 
The equations of motion (1.8) admit of a Painleve-Jacobi integral R2 + W = h. 

(1.9) 

2. STEADY MOTIONS 

On the basis of Routh’s theorem, the steady motions are defined as the critical points of the amended 
potential energy W, that is, as the solutions of the system of equations 
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1 + 

mOmI +y-+ 
fi2 

aw _ _ P2 mlm2 --rrs+=E’s=O 
da J2 fll ’ 2 1 

(2.1) 

These equations possess triangular solutions for which the points ml and m2 are at the same distance 
from the point m. and 

mlm2 p21 E’=-- P2 
m J2 ’ r,=r2=r=my(gl+g2-2s3)2 (2.2) 

If E’ = -ymlm2/13, that is, the points ml and m2 are attracted in accordance with the law of universal 
gravitation, then r = 1 and the solution is identical to Lagrange’s classical triangular solution. 

3. THE NECESSARY CONDITIONS FOR STABILITY 

We write the equations in variations in the form 

(3.1) 

wherea is the quadratic part of Routh’s function R in the relative velocities ul, u2, u3 and the deviations 
6 = qi - q! of the variables qi from their values qp in the unperturbed steady motion and C is the matrix 
of the part I%’ of the amended potential energy Wwhich is quadratic in the deviations &, e2, t3, that is 

In order to calculate the elements cii (cii = ci) of matrix C, we write out auxiliary formulae for the 
variations of certain functions occurring in re i ation (3.2). We introduce the notation 

J, =g,r, -gar2 (102). J, =g,qr2 
1, =‘I-r2c (I-2), f3=tjt5s 

Then (here and everywhere hence summation is carried out over repeated indices from 1 to 3) 

65 = 2Ji5,. 62J = 25;6Ji; 161= li5i. 13621 = i2spli -(1S1)2 

~Jv =& --g&2 +wA (I* 3, 6J, =w&, +a& +w& 

61, =& -c52+f&3 (I ++2), 61, =r& +f&2+rjr2c53 (3.3) 

J362 $ = (SJ)2 - fS2J, 62E = 

On substituting the expressions which have been obtained for Sr, S”J, ZEZ, and 6Z1, S12, SZ3, into the 
last formula of (3.3) and, then, into (3.2), we find that 

c, , = p’(4Jf - Jg, ) + e’ + e”ff - 2ymom, / q3 (1 t) 2) 

c,s = p’(4Ji - Jg3qr2)+e’qr2c+e”l; 

c12 = p’(4J,J, + Jg3)-e’c+e”l,f2 (3.4) 
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cl3 = p’(rlJ,J, -Jg,rz)+e’r2s+e”l,13 (I -2) 

p’=p21J3. e’=E’/l, e’g=(EN-e’)/12 

The matrices A and D are determined from the expressions for R2 and RI which are obtained from 
formulae (1.7) and (1.6) 

A=f 

I 

Ja -s$r$ -J& +drjr, JIJS 
-J& +dr,q Jgz - hi2 J2J3 

JlJ3 JzJs Jg2r: - Jz52 I 

I 

-2Js,r, -2 J2g4r2 + Jg4 -2J3tm + Js3r2 
D=P 

J2 
2Jmi - Jg4 2J,wi 2J,m - Jm 

-23, J2r2 - Jg3r, -2Jzr2 + J(J2 +g2%) -2JzJ39 + Jg4r,r2 

In matrix notation, Eqs (3.1) take the form 

(3.5) 

0 0 r2 

B=D-DT--_2m0m~m2p~~ 0 0 -q 
mJ2 

-r2 q 0 I 

The characteristic equation reduces to the form 

det(Ah2+Bh+C)=a0z3+alt2+a~z+a3=0; z=h2 

a0 =detA, a3 =detC. a, =ciiAij +atiBti, a2 =atiCii +cuBii 
(3.6) 

where A,, BP CP are the cofactors of the elements aij, b,, cij of the matrices A, B and C. 
For stability, tt is necessary that all the roots of Eq (3.6) with respect to the variable z should be real 

and negative. A check was carried out using Sturm series for the interval (-, 0). If the number of real 
roots in this interval is equal to three, the steady motion is stable in the linear approximation. This 
condition leads to the inequalities 

a,>O, cz,>O, a,=af-3aoa2>0 
(3.7) 

a5 = a,a2 - 9aoa3 > 0, ag = a5(4a,a, - 3uea,) - 4a*a,2 > 0 

If the left-hand side of just one of inequalities (3.7) is negative, the steady motion is unstable. It is 
not difficult to show that, among conditions (3.7), the inequalities a4 > 0, ag > 0 are not independent 
and can be discarded. 

4. ANALYSIS OF THE NECESSARY CONDITIONS FOR STABILITY 

The necessary conditions for stability (3.7) of triangular steady motions, which are defined by formulae 
(2.2), depend on the nine parameters r, 01, mo, ml, m2, y,p, E’, E” The number of parameters can be 
reduced bu changing to dimensionless quantities by means of a special choice of the units of 
measurement, which depend on part of these parameters. For simplicity, we shall retain the old notation 
of the dimensional quantities for the dimension&s quantities but de_note the dimensional quant$ies 
by an upper bar. We select the unit of mass as M, the unit of time as T and the unit of length as L: 

x7=%, +iii*, T=I/&=/p, ~=F=~2/(~~) 

where 15 is the angular velocity of the steady rotation of the whole system as a rigid whole in the steady 
motion being considered. With this choice of units of measurement, the dimensionless parameters 
mz, p, y, can be eliminated using the relations 



734 A. A. Burov et al. 

m2 =1-m,, p=J. y=llm 

The parameter E’ is eliminated using the first of the equations for the steady motions (2.2), that is, 
in the new variables 

I? = mlm~llm 

Furthermore, from formulae (2.2) and the last three formulae of (3.4), we obtain 

p’=IIJ, e’=m,m2/m, e”=(E”-e’)/12=(k-I)e’ll’ 

where k = ITIe is the magnitude of E” scaled by the quantity e’. 
After this has been done, the four dimensionless parameters 01, mo, ml and k remain in stability 

conditions (3.7). As a result, all of the formulae are simplified. For example, the elements of the matrix 
C (3.4) take the form 

Here 

cII =4J:/J+e”lf-3mom,/m (It,2), c,,=4J~lJ+e”i~ 

c12=4J1J2/J+e”‘l,12, ci3=4J,J,/J+e”l,l~ (1~2) 

J=g, +ta -%a. J, =a -83. J, =g, -g,. Js =gd 

e”=m,m2(k-1)/(2ml,), m2=I-m,, m=mo+I 

f, =I2 =I-coscx, I,=sina 

gl, g2, g3, g4, are defined by the last three formulae of (1.3). 
Introducing the notation q = ml, m2, after dividing by the general factor 

Im0dmo + 24 )I2 
we reduce the coefficients of characteristic equation (3.6) to the form 

a0 = (m. + 1)2, a, =(mo+1)(2mo+k+4) 

a2 =2m~+mo(3kl, -4k-31, +14)+2(k_9qlf+18ql, +3) 

a3 = 3(2 -l,)[-mo(k- 1)+6qf,(k+3)] 

As analytic, numerical and graphical investigations carried out when k b 0 show, the stability 
conditions (3.7) reduce to the two inequalities 

aj >o, a6 >o (4.1) 

where a3 is the discriminant of the quadratic part of the amended potential energy J@ and a6 is the 
discriminant of Eq. (3.6). 

For a graphical representation of the results, we chose the parameters (r, rn,,, ml and k as the basis 
where 

OGaortc, O<mo~oo, Osm,<M, OSk=Sao (4.2) 

but, in order to write the formulae in a more compact form, instead of OL and ml, we use the parameters 
11 = 1 - cosa and q, which vary within the ranges 

OSf,S2, OSqSX 

The first condition from (4.1) is equivalent to the inequality 

(k - Umo c 6(k + 3)ql, 
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In particular, when k s 1, this condition is satisfied for all values of the remaining parameters from 
the domain of definition (4.2). 

The left-hand side of the second condition has a more complex from. It is a sixth-degree polynomial 
in Ii, a fourth-degree polynomial in m. and a fourth-degree polynomial in k. While this polynomial is 
not written out here in its expanded form, we shall subsequently indicate some of its properties, which 
determine the form of the stability domain. 

5. THE LIMITING CASE 

We will consider the limiting case k = m, ml = l/2 (q = l/4), when the point masses ml, m2 form a 
rigid dumbbell with different masses at the ends [l]. 

In order to map the infinite range of possible values of the parameters rng (0 c mo < -) into the 
finite interval [0,2], instead of m,,, we introduce the new parameter [l] 

m, = 
i 

m,‘, m. > 1 

2-m,, rn,Sl 

In this manner, we shall construct the stability domain in the rectangle {a, CIO) E [0, rc] X [0,2]}. 
In this limiting case, the stability conditions, obtained from the coefficients of the highest power of 

k on the left-hand sides of inequalities (4.1), take the form 

m. c 31,/2, mj(91f -481, +64)+4m,,(91f -211, +8)+4(9/f -181, +I)>0 

Substituting m0 = 31i/2 into the left-hand side of the second inequality, we obtain 

@l/4)(11 - 2/3)4 

(5.1) 

Hence it follows that, in this limiting case, the curve a3 = 0 touches the curve a6 = 0 at the point 

11 = */3(cos a = l/3), m. = 1 

and, with the exception of this point, is wholly located in the domain 116 > 0. The region of stability, 
which is bounded by the curves a3 = 0 and &j = 0, is shown hatched in the upper part of Fig. 2. 

In the previously adopted notation [l] 

p* = I -cosa 

I +cosa’ 
po=l+$ 

the stability conditions (5.1) take the form 

(5.2) 

(P4 - 34P2 + l)(Po -l)2+2(~4-13j32+4)(~o-I)+(~4+8~2+16)>0 

The first inequality of (5.2) is identical to the first of the conditions in [l]. There is an inaccuracy in 
the second condition in [l] (the 15 in the last bracket should be 16). On account of this, the curves in 
[l], defining the stability domain, intersect at two points instead of touching, which is incorrect. It should 
be noted here that, prior to the publication of [l], there was a preliminary publication by the same 
authorst in which an analytic expression for the second of the stability conditions had still not been 
obtained, but the touching of the curves is clearly observable on the numerically constructed graph. 
The second inequality can be rewritten in expanded form with respect to mo = l/pa - 1) as 

mo ’ 
-(P4 - I 3b2 + 4) + 12Jj3Jfi 

p4+8p*+l6 

tBELET!XII, V V. and PONOMAREVA, 0. N., Parametric analysis of the stability of relative equilibrium in a gravitational 
field. Preprint No. 12, The M. V Keldysh Institute of Applied Mathematics, Academy of Sciences of the USSR, 1988. 
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6. THE DEPENDENCE OF THE STABILITY DOMAIN 
ON THE PARAMETERS 

We will now study the change in the stability domain, constructed for the case when k = 00, ml = l/2, 
when the parameters k and ml are reduced from their limiting values of = and l/2. We shall map the 
stability domains onto the same plane (OL, fi,,) for various fixed values of the parameters k and ml. We 
recall that k is the ratio of the coefficient of elasticity of the tether to the magnitude of e’ and the 
coefficient of elasticity E”, for a fixed k, therefore depends on the parameters ml, mo, 0~. The formula 
for calculating the parameter E” is given below in Section 7. 

Substituting the value of m. from the equation a3 = 0, that is 

m. =6(k+3)(k-I)-‘ql, 

into a& in the general case, we obtain the expression 

(k-l)8 

9(mo + l)4 a6 03=0 I 
=(k+2)(k_36qlf+72qf,+2)x 

x[k3(9qf; - 12qf, + I)+ k2(36q21: +36q1, + l)+ 

+k(2 1 6q21f - 27ql; + 84qf, - 5) + 3(108q*f: + 6ql: - 36ql, + I)]* 

which is the product of polynomials in k. The first two polynomials are linear with a 
of k. The third factor is the square of a third-degree polynomial. The coefficient of kJ 

ositive coefficient 
in this polynomial 

is a quadratic trinomial in Ii and, in the domain of definition of the parameters q and 11, it is non-negative 
and only vanishes for the values q = l/4, Ii = 2/3. This follows from the fact that the discriminant of 
the quadratic trinomial, which is equal to 9q(4q - l), is non-positive and only vanishes when 
~7 = l/4 (ml = l/2). So, by virtue of the fact that the coefficient of k3 is non-negative and the coefficient 
if k2 is strictly positive, we arrive at the conclusion that, with the exception of the case considered in 
Section 5, the curves a3 = 0 and a6 = 0 do not have common points when k is fairly large. 

Unlike the case of secular stability, the gyroscopic stability domain is found to increase as the spring 
stiffness decreases. What is more, the stability domain is displaced to the left and downwards in the 
direction of parameter values which are characteristic of actual satellites (see Fig. 2 for ml = 0.5 and 
ml = 0.1; the stability domains when k = 00 are shown hatched). 

Both ends of the upper boundary of the stability domains are located on the upper side of the 
rectangular range of variation of the parameters (m. = 
substitution of m. = 0 into 06 leads to the expression 

0) and do not change when k changes. Actually, 

a6/9 mo=O =[k* +5k+9ql,(2-f,)+6]*(36qlf -72ql, +I) 
I 

in which the first factor is strictly positive and the second factor vanishes at the points 

r, =I* jLg (cos’ct+$-) (6.1) 

When q =S l/36 (or ml G rnr = (3 - 2$2)/6 = 0.0286), these points merge and disappear, and the 
boundary a6 = 0. also disappears together with them. The stability domain is then solely determinedly 
the single lower left boundary a3 = 0. When m = O,Ol, the stability domains in Fig. 2 are positioned 
to the right above the curve a3 = 0, which is shown for values of k = m; 5; 1.01 (the stability domain 
when k = = is shown hatched). 

Regardless of the value of k, the left lower boundary a3 = 0 of the stability domain always starts out 
from the left upper corner my = 0, OL = 0 and finishes on the right-hand side of the diagram at the 
point m. = 12(k + 3)(k - 1) q. When k = 1, the lower left boundary of the stability domain touches 
the left and lower sides of the diagram and disappears. Hence, when k d 1, the stability domain is 
bounded solely by a single upper boundary. In this case, the stability domain contains values of the 
parameters which are characteristic of satellites (the left-hand lower corner of the diagram). In other 
words, if the spring stiffness is sufficiently low, the triangular stationary solutions can have applications 
in the dynamics of satellites. 
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Fig. 2 

k= 62725 

-I9 w-2 ar s- 

Fig. 3 

In Fig. 3, it is shown, for fixed values of the coefficient of elasticity k, how the stability domains, 
determined by just the right-hand upper boundary a6 = 0, vary as ml is changed (the stability domains, 
corresponding to ml = 0.5 are shown hatched in). In the case of the critical value ml = m;, the boundary 
of the stability domain touches the top of the diagram and disappears. Hence, when k G 1 and ml Q 
m;, the stability domain fills the whole area of the stability diagram considered. 
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In the model considered the tension in the spring turns out to be positive and, theoretically, the joining 
of the masses ml and m2 can be achieved using an elastic tether. However, if we take the forces of 
Newtonian attraction between the bodies ml and m2 into consideration we observe that a positive tension 
only occurs when a > IJ3. Otherwise, additional forces, which create a tension in the tethers, are required 
such as, for example, two equal jet forces acting along the tether at its ends. 

7. EXAMPLE: AN ESTIMATE OF THE VALUES 
OF THE PARAMETERS FOR A SATELLITE 

We will now estimate the order of magnitude of the coefficient of elasticity corresponding to a value 
ofk = 1 in t&e case of an Earth satellite. We consider a satellite consisting of two equal parts with a 
total mass M =& + fi;! = 16 kg (Gi, = ;;ii). We assume that the period of rotation in the orbit is 
e_ual to 90 min. whereupon T = l/G = 900 s. We assume that the radius of the orbit is equal to 
L = r= 6.4 X lo6 m, the mass of the Earth is equal-to &, = 6 x 10% kg and the distance between the 
masses ml and m2 in the steady motion is equal to I = 10’ m. 

The dimensionless values ml = l/2, q = l/4, m. = 6 X 1019, I 5 1.6 X 10V2, Ii = Z/2 = 0.8 X 10s2, 
e’ = q/(mo + 1) = 4 2 X 10m2’ E” = e’k = 4.2 X 10s21 correspond to these quantities. 

In order to calculate the dimensional value of a parameter in the standard system of units, its 
dimensionless value, calculated in the special system of units of measurements chosen here, has to be 
multiplied by the derived unit of measurement (in the chosen special system of units), corresponding 
to this parameter, expressed in the standard system of units 

E -H = E”nT-2 = 0.5 x 10-2’ N m-‘, E’ = rmL’F-2 r 0.5 x 1O-‘4 N 

For comparison, we present the value g; and 4 of the derivatives of the gravitational potential ,?s of 
the bodies ml and m2 in the same steady motion Ei = -0.27 X lo-l5 N m-’ and J!$ = Xl.135 X lo-” N. In 
view of the significant difference in the orders of the derivatives of the gravitational and total potentials, 
the coefficient of elasticity and the “tension” (negative) in the tether are of the same order of magnitude -- 
as zi and zi but of opposite sign. In particular, a tension E” 2 = -0.17 X lOa N is created when the 
length of the tether is doubled. For such small values of the coefficient of elasticity and “tension”, it is 
advisable to speak not so much about tether but about the artificial creation of elastic forces [5]. 

The investigation was carried out using the REDUCE system of analytic transformations. The 
formulae for the kinetic and potential energy (1.1) and formulae (3.3) for the differentiation of frequently 
encountered expressions were used as the input data. First integrals, Routh’s equations, the steady 
motions and the characteristic equation were obtained automatically in analytical form. 

We wish to thank V V Beletskii for useful discussions. 
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